Create computational models of language as a tool for creative thinking.
Develop AI models capable of understanding and generating multiple languages.
Investigate language evolution and word formation in diverse linguistic and cultural contexts.
Model RNA sequences using natural language processing techniques.
interest 5 description
interest 6 description
Creative Preference Optimization. Mete Ismayilzada, Antonio Laverghetta Jr., Simone A. Luchini, Reet Patel, Antoine Bosselut, Lonneke van der Plas, Roger E. Beaty (2025). Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) - Findings.
Evaluating Creative Short Story Generation in Humans and Large Language Models. Mete Ismayilzada, Claire Stevenson, Lonneke van der Plas (2025). Proceedings of the International Conference on Computational Creativity (ICCC).
Evaluating Morphological Compositional Generalization in Large Language Models. Mete Ismayilzada, Defne Circi, Jonne Sälevä, Hale Sirin, Abdullatif Köksal, Bhuwan Dhingra, Antoine Bosselut, Duygu Ataman, Lonneke van der Plas (2025). Proceedings of the Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics (NAACL).
Creativity in AI: Progresses and Challenges. Mete Ismayilzada, Debjit Paul, Antoine Bosselut, Lonneke van der Plas (2024). arXiv preprint.
Can language models learn analogical reasoning? Investigating training objectives and comparisons to human performance. Molly Petersen, Lonneke van der Plas (2023). Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).